
Radiation Processing Basics, Current and Emerging Applications

Ajit Singh and Harwant Singh

Research Chemistry Branch, AECL and AHA Enterprises Pinawa, MB, R0E 1L0 Canada

What is "USEFUL" (Beauty is in the Eye of the Beholder)

 If funding can be found for developing a result into a product or process, preferably from industry, it is "USEFUL"

Radiation Processing

Exposure of substrate to high energy radiation to give products that are

- Safe
- Unique
- Useful
- Produced cost-effectively

High Energy Radiation

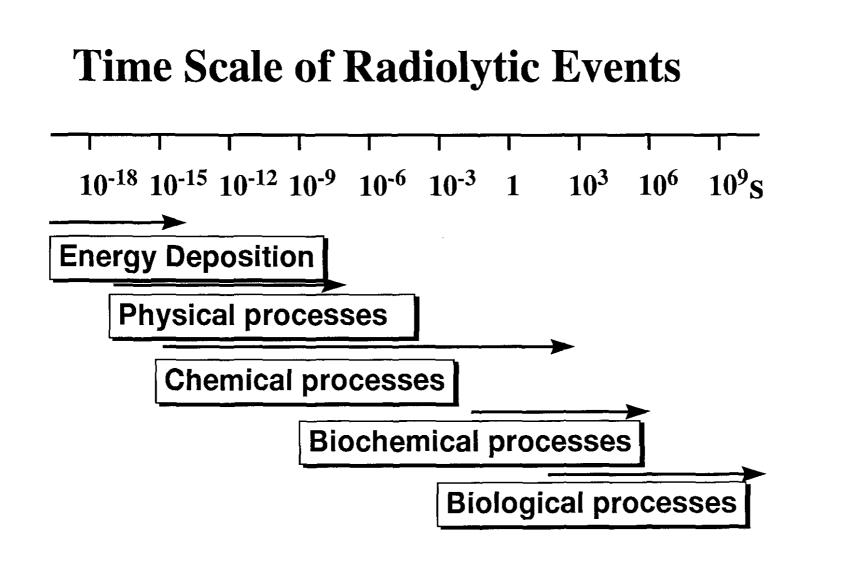
- α -, β -, and γ radiation
- X-rays
- Neutrons
- Accelerated Electrons
- Accelerated Positive lons

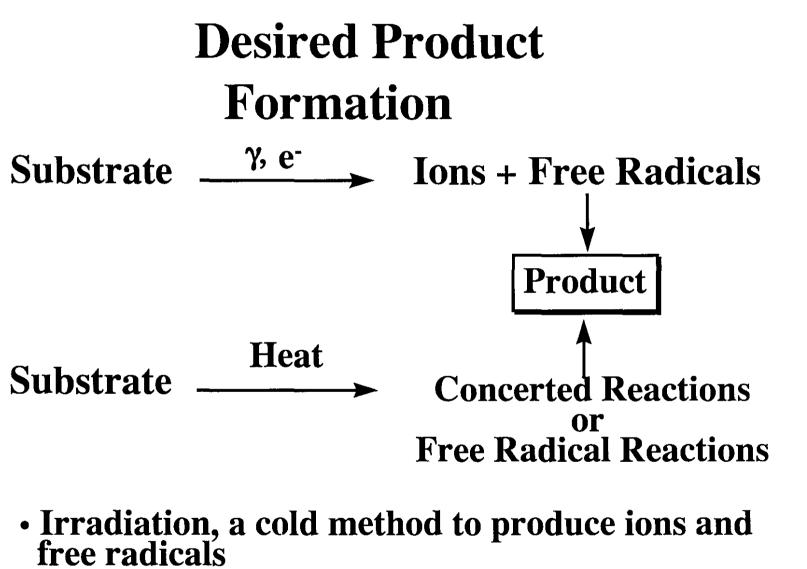
Useful Effects of High Energy Radiation

Based on

- Physical effects
- Chemical effects
- Biological effects

Examples Of Physical Effects


- Medical X-rays
- Radiography of materials
- Electron beam welding
- Electron beam heating in metallurgy
- Colour changes of gemstones
- Ion Implantation


Examples Of Chemical Effects

- Crosslinking of polyethylene
- Water purification
- Flue gas treatment
- Polymerization and grafting
- Curing of latex and rubber

Examples Of Biological Effects

- Radiation sterilization of medical products
- Radiation pasteurization of foods
- Radiation sterilization of foods
- Prevention of sprouting of tubers (potatoes and onions)
- Delayed ripening of fruits
- Sewage sludge irradiation

Factors Favouring Radiation Processing

- Toxicity of traditionally used chemicals, e.g. ethylene oxide and chlorine
- Uniqueness of product, e.g. heat shrink items
- Quality of product, e.g. coatings
- Removal of low concentrations of organic contaminants, e.g., in drinking water
- Safe pathogen control
- Overall cost savings

Radiation Processing Constraints

- Public concern, particularly about isotope sources
- Capital cost of radiation sources
- Inadequate knowledge of radiation technology amongst industrialists and industrial workers
- Momentum of current technology

Radiation Processing An Interdisciplinary Endeavour

Involving

- Chemistry
- Physics
- Biology
- Engineering
- Business aspects

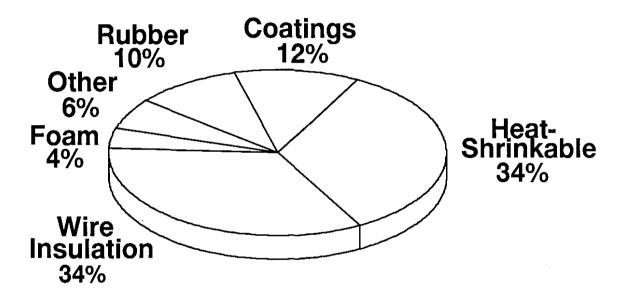
Radiation Processing Commercial and R&D Aspects

- Supply and demand, competition, market trends
- Support R&D: trouble-shooting, continued optimization of process
- New products/process R&D, as per business plan

Radiation Processing In-House vs Service Centre

- In-house requires sufficient supply of materials for efficient use of the irradiation facility
- Irradiation Service Centre requires good market surveys, assured supply of base load work, and presence of potential customers within the target area

Current y – and Electron Applications


- Coatings
- Inks/Printing
- Roofing materials
- Grafting
- Tires
- Magnetic media
- Adhesives
- Crosslinked films

- Heat shrink products
- Silicone release films
- Wood products
- Sterilization
- Immobilized enzymes
- Crosslinked PE
- Immobilized pharmaceuticals

And many more

Woods & Pikaev (1994)

Electron Processing

- ~500 Accelerators Worldwide (Saunders, 1988; now ~1000)
- ~150 γ Sources Woldwide for Medical Sterilization and Food Irradiation

Potential Industrial Applications of Electron- and γ- Sources

- Sterilization of Medical Disposables
- Radiation Crosslinking of Polyethylene Products
- Sewage Sludge Irradiation
- Flue Gas Treatment

- Immobilization of Enzymes
 and Pharmaceuticals
- Viscose Production
- Food Irradiation
- Advanced Composites
- Wood Plastics Composites
- Mechanical Pulping

See Bradley (1984), Singh and Silverman (1992), Woods and Pikaev (1994)

Further Requirments

- Entrepreneurs to invest (sterilization, food, PE)
- Improve properties of advanced composites
- Radiation effects on cellulose and wood
- Use of O₃/irradiation (waste waters) in other systems (pulp, pulp mill effluent)
- Training of industrial workers and industrialists in radiation technology
- Quantum leaps possible (viscose, advanced composites)

Cost Effectiveness of Radiation Processing

Depends on

- Uniqueness of the desired change
- Efficiency (chain length) of the radical reactions
- Large volumes, use of high power electron accelerators
- Use of the lowest energy electrons appropriate for a process
- Combination treatment (synergistic effect)

Food Irradiation

Safety and Wholesomeness of Irradiated Foods

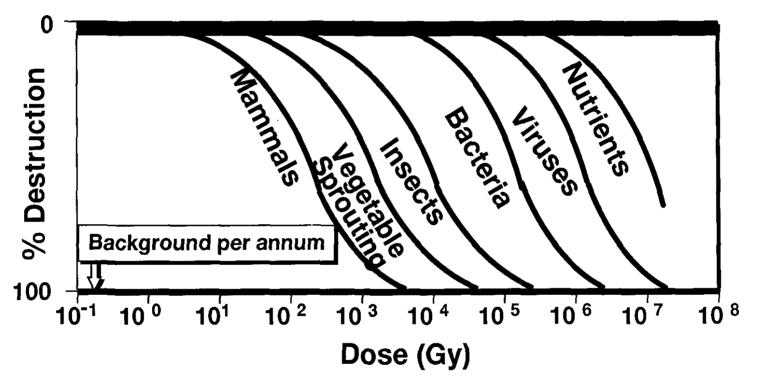
An Examination of the Scientific Evidence and Applications

Safety and Wholesomeness of Irradiated Foods

- The term "wholesome" means nutritious, clean, and otherwise fit for human consumption
- With regard to irradiated foods, considerations of wholesomeness or safety for consumption involve aspects of radiological safety, toxicological safety, microbiological safety, and nutritional adequacy
- Confidence in safety and wholesomeness of irradiated food is central to consumer acceptance of such food
- Consumer acceptance is central to industry acceptance
- Therefore, when examining questions associated with safety and wholesomeness of irradiated foods, one must consider all of the above

Why Food Irradiation?

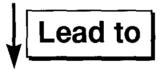
- 1. Pathogen Control
 - Salmonella (chicken)
 - Enteropathogenic *E. coli* (O157 : H7, Hamburger)
- 2. Substitute for Toxic Fumigants (for Quarantine)
 - Methyl Bromide
 - Ethylene Oxide
- 3. Shelf-life Extension
 - Fruits/Vegetables
 - Meats
 - Fish/Sea Food


Foodborne Disease is Serious Business

- Foodborne Disease can Cause Serious Illness and Death
 - Morbidity: diarrhea, fever, kidney failure, birth defects
 - Mortality: generally the very young and the very old
- Significant Costs to National Economies
 - Health care costs
 - Loss of productivity
 - Loss estimates are in billions of dollars annually for North America

Technical Basis for Food Irradiation

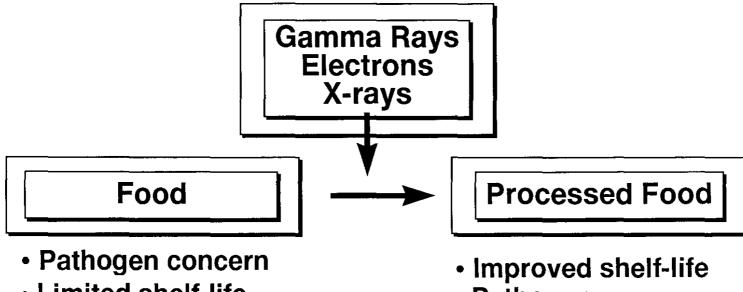
- The beneficial effects of irradiation are due to differential sensitivities of different biological species, to inactivation by irradiation
- Free radicals (·OH, ·H and e⁻_{aq}) formed from water present in foods are responsible for most of the radiation effects observed in foods
- The most crucial target of the free radicals is DNA (or the genome) which results in inactivation (killing) of the microbes/insects
- It does not significantly affect the nutritive value of the food


Basis for Beneficial Effect of Irradiation

 These differential sensitivities of different functional entities to inactivation are the basis of beneficial effects of irradiation

Achievable Technical Benefits

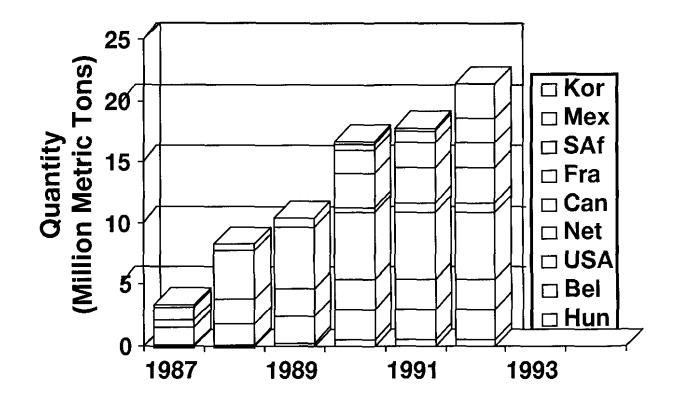
- Pathogen control
- Spoilage microorganism control
- Insect disinfestation
- Delay of ripening or maturation
- Sprout inhibition



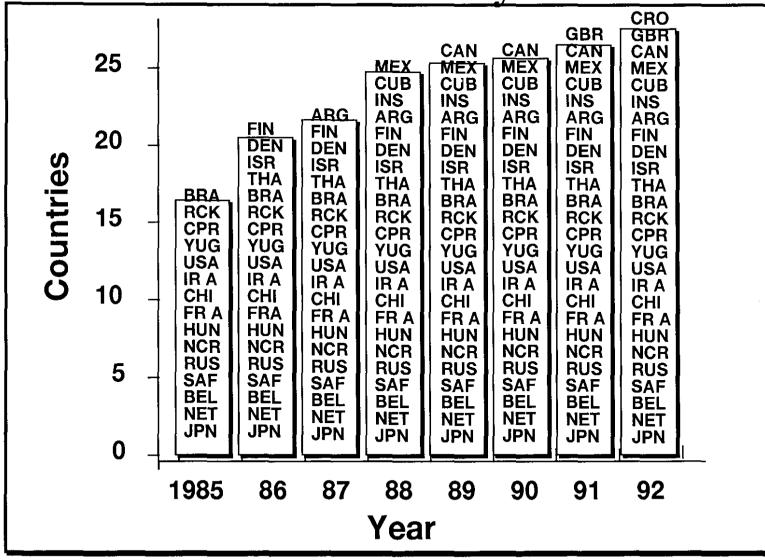
Consumer and Social Benefits

- Safer foods
- Better quality
- Less spoilage (shelf-life extension)
- Overall economic gain

Technology for Food Irradiation


 Involves the exposure of a food to ionizing radiation for the purpose of achieving desired technical benefit

Limited shelf-life


Pathogen
 eliminated/reduced

Commercial Irradiation of Spices and Vegetable Seasonings in Different Countries

 Since 1992, the number of countries irradiating spices and seasonings has grown enormously

Countries Irradiating Food/Ingredients Commercially

Product	Purpose	Clearance	Dose (kGy)
Potatoes, onions & garlic	Sprout inhibition	Unconditional	0.15
Dates	Disinfestation	Unconditional	1
Mangoes, papayas	Disinfestation and delay of ripening	Unconditional	1
Wheat, rice, pulses	Disinfestation	Unconditional	1
Cocoa Beans	Disinfestation	Unconditional	1
Fish and fishery products	Disinfestation	Unconditional	1
Fish and fishery products	Reduce microbial load	Unconditional	2.2
Strawberries	Shelf-life extension	Unconditional	3
Nham	Decontamination	Unconditional	4
Moo yor	Decontamination	Unconditional	5
Sausage	Decontamination	Unconditional	5
Frozen shrimps	Decontamination	Unconditional	5
Cocoa beans	Reduce microbial load	Unconditional	5
Chicken	Decontamination and shelf-life extension	Unconditional	7
Spices & condiments, dehydrated	Insect disinfestation	Unconditional	10
Onions and onion powder	Decontamination	Unconditional	10

List of Foods Cleared for Irradiation in Thailand (1986)